Sets

Case Study Based Questions

Read the following passages and answer the questions that follow:

1. To check the understanding of sets, a Math teacher writes two sets A and B having finite numbers of elements. The sum of cardinal numbers of two finite sets A and B is 9. The ratio of a cardinal number of the power set of A is to a cardinal number of the power set of B is 8:1.

(A) The cardinal number of set A is:

- (a) 2
- (b) 3
- (c) 6
- (d) 8

(B) The cardinal number of set B is:

- (a) 2
- (b) 3
- (c) 6
- (d) 8

(C) The maximum value of $n(A \cup B)$ is:

- (a) 3
- (b) 6
- (c) 8
- (d)9

(D) The minimum value of n ($A \cup B$) is:

(a) 3

- (b) 6
- (c) 8
- (d)9

(E) If $B \subset A$, then $n (A \cap B)$ is:

- (a) 3
- (b) 6
- (c) 8
- (d) 6

Ans. (A) (c) 6

Explanation: Let the cardinal numbers of sets A and B be n(A) and n(B) respectively.

...(ii)

Given,
$$n(A) + n(B) = 9 - (i)$$

Also, the cardinal number of the power set

of
$$A = 2^{n}(4)$$

And the cardinal number of the power set of

$$B=2^n(B)$$

Given,
$$\frac{2^{n(A)}}{2^{n(B)}} = \frac{8}{1}$$

$$\Rightarrow 2^{n(A)-n(B)}=2^3$$

$$\Rightarrow$$
 $n(A) - n(B) = 3$

On adding (i) and (ii) , we get

$$2n(A) = 12$$

$$\Rightarrow$$
 $n(A) = 6$

Thus, the cardinal number of set A is 6.

(B) (b) 3

Explanation: On subtracting (ii) from (i), we get

$$2n(B) = 6$$

$$n(B) = 3$$

Thus, the cardinal number of set B is 3.

(C) (d) 9

Explanation: We have,

$$n(A \cup B) = n(A) + n(B) - n(A \cup B)$$

The value of n(AUB) will be maximum

when $n(A \cap B)$ will be minimum.

The minimum value of $n(A \cap B) = 0$.

So, maximum value of

$$n(A \cap B) = n(A) + n(B) = 6+3=9$$

(D) (b) 6

Explanation: We have,

$$n(A \cup B) = n(A) + n(B) - n(A \cup B)$$

The value of $n(A \cup B)$ will be minimum when n(AB) will be maximum.

The maximum value of $n(A \cap B) = 3$.

So, minimum value of

(E) (a) 3

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

=6+3-3=6

Explanation: Given BCA

→ A∩B=B

$$\rightarrow$$
 n(A \cap B) = n(B)

$$\Rightarrow$$
 n(A(\cap B) = 3

2. In a library, 25 students are reading books on physics, chemistry, and mathematics. It was found that 15 students were reading mathematics, 12 reading physics and 11 reading chemistry, 5 students reading both mathematics and chemistry, 9 students reading both physics and mathematics, 4 students reading both physics and chemistry, and 3 students reading all three subjects.

- (A) Find the number of students reading only Chemistry.
- (B) Find the number of students reading only Mathematics.
- (C) Find the number of students reading at least one of the subject and also find the number of students reading none of the subjects.

Ans. Let M denote a set of students who are reading mathematics, P denotes who is reading physics and C denotes who is reading chemistry. We have,

$$n(U)=25$$
, $n(M) = 15$, $n(P) = 12$, $n(C)=11$

$$n(M \cap C)=5$$
, $n(M \cap P)=9$, $n(P \cap C)=4$

$$n(M \cap P \cap C)=3$$

(A) The number of students reading only chemistry

$$= n(M' \cap P' \cap OQ)$$

But,
$$n(M' \cap P' \cap C) = n((M \cap P)' \cap C)$$

$$= n(C)-n((M \cap P) \cap C$$

[since,
$$n(A \cap B) = n(A) - n(A \cap B)$$
]

$$= n(C)-n((M \cap C) \cup (P \cap C))$$

$$= n(C)-n(M \cap C)+n(P \cap C)-n(M \cap P \cap C))$$

(B) The number of students reading only Mathematics $n(M \cap P \cap C)$

But,
$$n(M \cap P \cap C) = n(M \cap n (P \cap C)')$$

$$= n(M)-n(M\cap(P\cap C))$$

$$= \mathsf{n}(\mathsf{M}) \text{-} \mathsf{n}((\mathsf{M} \cap \mathsf{P}) \cup (\mathsf{M} \cap \mathsf{C}))$$

$$= \mathsf{n}(\mathsf{M})\text{-} \left(\mathsf{n}(\mathsf{M} \cap \mathsf{P}) + \mathsf{n}(\mathsf{M} \cap \mathsf{C})\text{-}\mathsf{n}(\mathsf{M} \cap \mathsf{P} \cap \mathsf{C})\right)$$

(C) The number of students reading at least one of

the subject =
$$n(MUPUC)$$

$$n(M \cup P \cup C) = n(M) + n(P) + n(C) - n(M \cap P)$$

$$-n(P \cap C)-n(M \cap C) + (M \cap P \cap C)$$

The number of students reading none of the subjects

$$= n(M' \cap P' \cap C') = n(M \cup P \cup C)$$

$$= n(U)-((M \cup P \cup C)=25-23=2$$

